skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gelin, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Entropy-stabilized oxides are single-phase, multicomponent oxides that are stabilized by a large entropy of mixing, ΔS, overcoming a positive enthalpy. Due to the −TΔS term in the Gibbs' free energy, G, it can be hypothesized that entropy-stabilized oxides demonstrate a robust thermal stability. Here, we investigate the high temperature stability (1300–1700 °C) of the prototypical entropy-stabilized rocksalt oxide (MgCoNiCuZn)0.2O in air. We find that at temperatures >1300 °C, the material gradually loses Cu and Zn with increasing temperature. Cu is lost through a selective melting as a Cu-rich liquid phase is formed. Zn is sublimed from the rocksalt phase at approximately similar temperatures to those corresponding to the Cu loss, significantly below both the melting temperature of ZnO and its solubility limit in a rocksalt phase. The elemental loss progressively reduces the entropy of mixing and results in a multiphase solid upon quenching to room temperature. We posit that the high-temperature solubility of Cu and Zn is correlated providing further evidence for entropic stabilization over general solubility arguments. 
    more » « less
  2. Oxides of p-block metals (e.g., indium oxide) and semimetals (e.g., antimony oxide) are of broad practical interest as transparent conductors and light absorbers for solar photoconversion due to the tunability of their electronic conductivity and optical absorption. Comparatively, these oxides have found limited applications in solar-to-hydrogen photocatalysis primarily due to their high electronegativity, which impedes electron transfer for converting protons into molecular hydrogen. We have shown recently that inserting s-block metal cations into p-block oxides is effective at lowering electronegativities while affording further control of band gaps. Here, we explain the origins of this dual tunability by demonstrating the mediator role of s-block metal cations in modulating orbital hybridization while not contributing to frontier electronic states. From this result, we carry out a comprehensive computational study of 109 ternary oxides of s- and p-block metal elements as candidate photocatalysts for solar hydrogen generation. We downselect the most desirable materials using band gaps and band edges obtained from Hubbard-corrected density-functional theory with Hubbard parameters computed entirely from first principles, evaluate the stability of these oxides in aqueous conditions, and characterize experimentally four of the remaining materials, synthesized with high phase uniformity, to assess the accuracy of computational predictions. We thus propose seven oxide semiconductors, including CsIn3O5, Sr2In2O5, and KSbO2 which, to the extent of our literature review, have not been previously considered as water-splitting photocatalysts. 
    more » « less